Strengthening at nanoscaled coherent twin boundary in f.c.c. metals
نویسندگان
چکیده
This paper analyses slip transfer at the boundary of nanoscaled growth twins in face-centred cubic (f.c.c.) metals for strengthening mechanism. The required stress for slip transfer, i.e. inter-twin flow stress, is obtained in a simple expression in terms of stacking fault energy and/or twin boundary (TB) energy, constriction energy and activation volume. For nanotwinned Al, Cu and Ni, inter-twin flow stress versus twin thickness remarkably shows Hall–Petch relationship. The Hall–Petch slope is rationalized for various reactions of screw and non-screw dislocations at the TB. Additionally, strengthening at the boundary of nanoscaled deformation twins in f.c.c. metals is analysed by evaluating required twinning stress. At small nanograin size, the prediction of deformation twin growth stress shows inverse grain-size effect on twinning, in agreement with recent experimental finding.
منابع مشابه
Computed Structures of Twist Boundaries Compared with Tem Observations
The structure of (111) twist boundaries in f.c.c. metals is investigated by computer simulation. For coincidence orientations in the vicinity of the twin orientation a characteristic six-star pattern has been found, in agreement with TEM observations on dislocation networks in nearcoherent twin boundaries in Au. Dislocation networks in near-coherent twin boundaries in Au have recently been stud...
متن کاملThe interaction mechanisms of a screw dislocation with a defective coherent twin boundary in copper
∑ 3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumptio...
متن کاملFormation of annealing twins during recrystallization and grain growth in 304L austenitic stainless steel
Understanding of the mechanisms of annealing twin formation is fundamental for grain boundary engineering. In this work, the formation of annealing twins in a 304L austenitic stainless steel is examined in relation to the thermo-mechanical history. The behavior of annealing twins of various morphologies is analyzed using an in-situ annealing device and EBSD. The results confirm that there is a ...
متن کاملDislocation–Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible ...
متن کاملSize Effect and Deformation Mechanism in Twinned Copper Nanowires
Molecular dynamics simulations were performed to demonstrate the synergistic effects of the extrinsic size (nanowire length) and intrinsic size (twin boundary spacing) on the failure manner, yield strength, ductility and deformation mechanism of the twinned nanowires containing high density coherent twin boundaries CTBs paralleled to the nanowires’ axis. The twinned nanowires show an intense ex...
متن کامل